Übungen zur Mathe III für Physiker

Blatt 5

Aufgabe 1:

Bestimmen Sie die Stellen lokaler Extrema der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \to f(x,y) := e^5 + \frac{1}{10}(x^2 + y^2 - 35)e^{-x}$$

und ermitteln Sie, ob es sich um lokale Minima, lokale Maxima oder Sattelpunkte handelt.

Aufgabe 2:

Seien $V := \{(x,y) \in \mathbb{R}^2 : x^2 + 2y^2 = 1\}$ und $f : V \to \mathbb{R}$, $f(x,y) = x^5 - 16y^5$. Bestimmen Sie die stationären Punkte von f, sowie die zugehörigen Funktionswerte.

Aufgabe 3:

Sei : $\mathbb{R}^3 \to \mathbb{R}^4$,

$$f(x,y,z) = \begin{pmatrix} yz \\ x^4 + y^5 \\ x^3 \cos(y-z) \\ 1 \end{pmatrix}$$

Approximieren Sie f linear um den Punkt (0,1,1). Berechnen Sie f(x) in dieser linearen Approximation im Punkt $x=(\frac{1}{10},\frac{11}{10},\frac{11}{10})$ und geben Sie den Fehler an!

Aufgabe 4:

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch $f(x_1, x_2, x_3) = e^{x_1^2 + x_2^2} \cos(x_1 x_3)$.

Berechnen Sie die Jacobi-Matrix im Punkt (x,y,z) sowie die Ableitungsfunktion von g(x):=f(x,x,x)!